
Let’s go engineering …. 

Software Technology Master specialization 



2 

Software is eating the world 
 

Marc Andreessen, Netscape founder 



Nieuwe FB Games 

20 Million LoC 

CERN’s Hadron Collidor  

30,000 SW components 

100,000,000 LoC 

150,000 LoC  

51,000,000 LoC  



Wearable technology 

This only gets worse …. 

Every object in IP address 

Robots 

Self-driving cars 



Let’s go engineering …. 

5 

more  

 reliable 

 maintainable 

 secure 

 scalable 

via 

 model-driven engineering 

 continuous integration / deployment 

 novel programming languages / concepts 

 code quality measurements 

 domain-specific languages 

 refactoring 

 

 SOA, microarchitectures 

 cloud computing 

 multicore computing 

 rigorous testing 

 model checking 

 … 

 

 

 timely 

 robust 

 energy-efficient 

 portable 

 

 

 testable 

 stable 

 usable 

 resillient 

Write better software faster 



Software Technology 6 



Software Technology 7 



Software Technology 8 

Who should take this Master programme? 

 Are you interested in becoming a 

 Software practitioner 

… with theoretical knowledge and practical skills 

 Researcher 

… do theoretical and experimental research 

 Tool builder 

… proficient in state-of-the-art software engineering techniques 

 

 During your Bachelor you have learned the basic concepts and 

techniques to work with Software Engineering 

 

 Software Technology specialization educates you to make a difference 

in this area! 



Highlights - 1 

 Broad coverage 

 Software Engineering phases  

 requirements, architecture, design, … 

 Technologies  

 XML, parallel computing, programming languages, …  

 Application areas  

 security, cloud computing, real-time systems, … 

 

 Includes courses from      

 



Highlights 2 

 Practical relevance 

 Industrial Software Engineering Project (experience with real project) 

 Industrial Advisory Board (your future employer?) 

 More practice, less theory 

Software Technology 10 



Kinds of final projects 

 Case Studies applying software technology 

 On the Quality of Quality Models - J.H. Hegeman - @ Info Support BV 

 Evaluating the Behavior of Embedded Control Software – Christian 

Terwellen @ Océ 

 Towards Continuous Delivery in System Integration Projects - Sandra 

Drenthen @ Everett 

 

 Developing tools & Methods 

 A Java Bridge for LTSmin - Ruben Oostinga 

 Trace-based debugging for Advanced-Dispatching Programming 

Languages – Marnix van ‘t Riet 

 Multi-Target User Interface design and generation using Model-Driven 

Engineering – Mark Oude Veldhuis @ Sigmax 

 Industrial Validation of Test Coverage Quality – Martijn Adolfsen 

Software Technology 11 



Curriculum Structure - Overview 

 General 

 Courses on fundamental SE concepts 

 3 mandatory  

 Phases  

 Dedicated courses zooming in techniques from different SE phases 

 choose 3 from 6 

 Technologies 

 Courses applying different technologies 

 Choose 2 from 9 

 Application Areas  

 Software-related courses taken from different application areas 

 Choose 2 from 8 

 Electives 

 up to 4 courses 

 Special courses  

 upto 4 courses  

 

Software Technology 12 



Why should you take this Master programme? 

 Overlap with ISE specialization 

 ISE: focus information and data technology 

 ST:  broad education in software engineering 

   room to specialize in technologies and application areas 

   (other than IS) 

 

 Overlap with MTV specialization 

 MTV: focus on quality assurance phase in SE process and on 

   QA tools 

 ST:  considering whole SE lifecycle 

Software Technology 13 



Curriculum Structure – General courses 

3  mandatory 

 UT: Software Management 

 UT: ADSA – Model-Driven Engineering 

 UT: Industrial Software Engineering project (10 EC) 

Software Technology 14 



Curriculum Structure - Phases 

At least three of: 

 UT: Specification of Information Systems (Requirements phase) 

 UT: Testing Techniques (Quality Assurance phase) 

 UT: Design of Software Architecture (Architecture phase) 

 UT: Best Practices in Software Development (Detailed Design and 

Development phases) 

 One of  (Maintenance phase): 

 TU/e: 2IS55 - Software Evolution 

 TUD: IN4189 - Software Reengineering 

Software Technology 15 



Curriculum Structure - Technologies 

At least two of: 

 UT: System Validation 

 UT: Modeling and Analysis of Concurrent Systems 1 

 UT: ADSA – Product Line Engineering 

 UT: Data Science 

 UT: Concepts of Programming Languages 

 TU/e: Advanced algorithms 

 TU/e: Architecture of Distributed Systems 

 TUD: Distributed Algorithms 

 TUD: Parallel Algorithms and Parallel Computers 

Software Technology 16 



Curriculum Structure – Application Areas 

At least two of: 

 One of (application area “security”) 

 UT: Network Security 

 UT: Algebra & Security 

 UT: Real-Time Software Development 

 UT: Managing Big Data 

 UT: Programming in Engineering 

 UT: Wireless Sensor Networks 

 UT: Cloud networking 

 TU/e: Constraint programming 

Software Technology 17 



Curriculum Structure – Electives 

up to four courses (to reach a total of 120 ECTS) 

 UT: Advanced Logic 

 UT: Capita Selecta Software Technology 

 UT: Advanced Programming in Engineering 

 UT: Advanced Requirements Engineering 

 UT: Service-oriented Architecture Web Services 

 UT: Graph Theory 

 UT: Design Science Methodology 

 TU/e: Algorithms for massive data 

 TU/e: Geometric algorithms 

 TUD: Embedded Real-Time systems 

 And all courses from the Computer Science Master program at the 

University of Twente 

 A “Traineeship” cannot be chosen as part of the ST study package. 

Software Technology 18 



Special courses 

 Capita Selecta Software Technology: 

  elective self-study course 

  research on selected topics from Software Technology. Although not 

mandatory, we will recommend this course to all students with research-

oriented interests. 

 

 Industrial Software Engineering project:  

 Project course, where teams develop a product. A company (eg from 

advisory board) acts as the client for this product. The team must follow a 

complete software engineering process. 

 

 Best Practices in Software Development (Q 2B) 

 Software patterns 

 

 Concepts of Programming Languages (Q 1B): 

  Progamming paradigma’s 

 

Software Technology 19 



Local Embedding 

 Relation to other specializations discussed before 

 

 Most core courses from groups “Formal Methods and Tools” and 

“Services, Cyber security and Safety” 

 

 Other groups contribute courses mainly in categories “technology” and 

“application areas” 

 

 Students can do master project in any research group 

 Performing software engineering in the respective application domain 

 Develop or evaluate supporting tools 

Software Technology 20 



International Embedding - IEEE Software Engineering Body 

of Knowledge (SWEBOK) 

Software Technology 21 

Knowledge Area Covered in Courses of SE Master Program 

Software requirements  Specification of Information Systems- 

Software design  Design of software architecture- 

 Advanced Design of Software Architectures – PLE- 

 Advanced Design of Software Architectures – MDE- 

 Service-Oriented Architecture with Web Services 

Software construction  Concepts of Programming Languages 

 Service-Oriented Architecture with Web Services 

 Best practices in software development- 

Software testing  Testing Techniques- 

 Best practices in software development- 

Software maintenance  Software Evolution- 

 Software Reengineering- 

Software configuration management - 

Software engineering management  Software Management- 

Software engineering process  Software Management- 

Software engineering tools and methods  Best practices in software development- 

Software quality  System Validation- 

 Modeling and Analysis of Concurrent Systems I- 

Software engineering professional practice  Industrial software engineering project 

Software Engineering Economics - 

Computing Foundations  Advanced algorithms 

 Parallel algorithms and parallel computers 

 Network security 

Mathematical Foundations  Algebra and security 

Engineering Foundations - 



Details 

 Responsible chair:  Formal Methods and Tools 

 Homepage:     http://fmt.ewi.utwente.nl/education/st/ 

 Program Mentor:   Prof. Arend Rensink (Zilverling 3090) 

          a.rensink@utwente.nl 

Software Technology 22 

http://fmt.ewi.utwente.nl/education/st/
mailto:a.rensink@utwente.nl

